A Family of Variable-Metric Methods Derived by Variational Means

نویسندگان

  • Donald Goldfarb
  • DONALD GOLDFARB
چکیده

A new rank-two variable-metric method is derived using Greenstadt's variational approach [Math. Comp., this issue]. Like the Davidon-Fletcher-Powell (DFP) variable-metric method, the new method preserves the positive-definiteness of the approximating matrix. Together with Greenstadt's method, the new method gives rise to a one-parameter family of variable-metric methods that includes the DFP and rank-one methods as special cases. It is equivalent to Broyden's one-parameter family [Math. Comp., v. 21, 1967, pp. 368-381]. Choices for the inverse of the weighting matrix in the variational approach are given that lead to the derivation of the DFP and rank-one methods directly. In the preceding paper [6], Greenstadt derives two variable-metric methods, using a classical variational approach. Specifically, two iterative formulas are developed for updating the matrix Hk, (i.e., the inverse of the variable metric), where Hk is an approximation to the inverse Hessian G_1ixk) of the function being minimized.* Using the iteration formula Hk+x = Hk + Ek to provide revised estimates to the inverse Hessian at each step, Greenstadt solves for the correction term Ek that minimizes the norm NiEk) = Tr iWEkWEY) subject to the conditions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems‎

In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

On the Monotone Mappings in CAT(0) Spaces

In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods  by combining the resolvent method with Halpern's iterative method and viscosity approximation method for  finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations  in ...

متن کامل

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method

In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...

متن کامل

New class of limited-memory variationally-derived variable metric methods

A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010